您的位置 首页 Excel

三角函数的多次求导公式(三角函数的多次求导公式推导)

三角函数的多次求导公式?

三角函数求导公式有:

1、(sinx)’ = cosx

2、(cosx)’ = – sinx

3、(tanx)’=1/(cosx)^2=(secx)^2=1+(tanx)^2

4、-(cotx)’=1/(sinx)^2=(cscx)^2=1+(cotx)^2

5、(secx)’=tanx·secx

6、(cscx)’=-cotx·cscx

7、(arcsinx)’=1/(1-x^2)^1/2

8、(arccosx)’=-1/(1-x^2)^1/2

9、(arctanx)’=1/(1+x^2)

10、(arccotx)’=-1/(1+x^2)

11、(arcsecx)’=1/(|x|(x^2-1)^1/2)

12、(arccscx)’=-1/(|x|(x^2-1)^1/2)

13、(sinhx)’=coshx

14、(coshx)’=sinhx

15、(tanhx)’=1/(coshx)^2=(sechx)^2

16、(coth)’=-1/(sinhx)^2=-(cschx)^2

17、(sechx)’=-tanhx·sechx

18、(cschx)’=-cothx·cschx

19、(arsinhx)’=1/(x^2+1)^1/2

20、(arcoshx)’=1/(x^2-1)^1/2

21、(artanhx)’=1/(x^2-1) (|x|<1)

22、(arcothx)’=1/(x^2-1) (|x|>1)

23、(arsechx)’=1/(x(1-x^2)^1/2)

24、(arcschx)’=1/(x(1+x^2)^1/2)

三角函数的求导函数简便方法?

(sinx)’=cosx

(cosx)’=-sinx

(tanx)’=sec2x=1+tan2x

(cotx)’=-csc2x

(secx)’ =tanx·secx

(cscx)’ =-cotx·cscx.

(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x

(sinx)’=cosx

(cosx)’=-sinx

(tanx)’=sec2x=1+tan2x

(cotx)’=-csc2x

(secx)’ =tanx·secx

(cscx)’ =-cotx·cscx.

(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x

三角函数的导数和微分公式?

(sinx)’=cosx

(cosx)’=-sinx

(tanx)’=sec2x=1+tan2x

(cotx)’=-csc2x

(secx)’ =tanx·secx

(cscx)’ =-cotx·cscx.

(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x

扩展资料:

基本三角函数关系的速记方法

六边形的六个角分别代表六种三角函数,存在如下关系:

1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。

2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ…

3)阴影部分的三角形,处于上方两个顶点的平方之和等于下顶点的平方值。

三角函数与反三角函数求导法则?

、反正弦函数的求导:(arcsinx)’=1/√(1-x^2)

2、反余弦函数的求导:(arccosx)’=-1/√(1-x^2)

3、反正切函数的求导:(arctanx)’=1/(1+x^2)

4、反余切函数的求导:(arccotx)’=-1/(1+x^2)

为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x。

相应地。反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π 2;反余切函数y=”arccot” x的主值限在0<y<π。

1、反正弦函数

正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

2、反余弦函数

余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。

3、反正切函数

正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

5、反余切函数

余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。

6、反正割函数

正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。

定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。

7、反余割函数

余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。

扩展资料:

反三角函数的公式:

反三角函数的和差公式与对应的三角函数的和差公式没有关系:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];

y=arccos(x),定义域[-1,1],值域[0,π];

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);

y=arccot(x),定义域(-∞,+∞),值域(0,π);

sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;

证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。

其他几个用类似方法可得。

cos(arccosx)=x,arccos(-x)=π-arccosx。

tan(arctanx)=x,arctan(-x)=-arctanx。

反三角函数其他公式:

cos(arcsinx)=√(1-x^2)。

arcsin(-x)=-arcsinx。

arccos(-x)=π-arccosx。

arctan(-x)=-arctanx。

arccot(-x)=π-arccotx。

arcsinx+arccosx=π/2=arctanx+arccotx。

sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x。

当x∈[-π/2,π/2]有arcsin(sinx)=x。

x∈[0,π],arccos(cosx)=x。

x∈(-π/2,π/2),arctan(tanx)=x。

x∈(0,π),arccot(cotx)=x。

x>0,arctanx=π/2-arctan1/x,arccotx类似。

若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))。

三角函数的诱导公式(四公式) 。

公式一: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 。

公式二: sin(π/2-α) = cosα cos(π/2-α) = sinα 。

公式三: sin(π/2+α) = cosα cos(π/2+α) = -sinα 。

公式四: sin(π-α) = sinα cos(π-α) = -cosα

三角函数求导法则讲解?

1、三角函数求导公式:(sinx)’=cosx、(cosx)’=-sinx、(tanx)’=sec2x=1+tan2x。

2、三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

三角函数求导基本常识?

1.锐角三角函数公式

sinα=∠α的对边/斜边

cosα=∠α的邻边/斜边

tanα=∠α的对边/∠α的邻边

cotα=∠α的邻边/∠α的对边

2.倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2是sinA的平方sin2(A))

3.三倍角公式

sin3α=4sinα?sin(π/3+α)sin(π/3-α)

cos3α=4cosα?cos(π/3+α)cos(π/3-α)

tan3a=tana?tan(π/3+a)?tan(π/3-a)

4.三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

5.辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

6.四倍角公式

sin4a=-4*[cosa*sina*(2*sina^2-1)]

cos4a=1+(-8*cosa^2+8*cosa^4)

tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)

7.降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

三角函数求导原理?

1三角函数的导数公式有

(sinx)’=cosx

(cosx)’=-sinx

(tanx)’=sec2x=1+tan2x

(cotx)’=-csc2x

(secx)’=tanx·secx

(cscx)’=-cotx·cscx.

(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x

2基本的求导法则

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

2、两个函数的乘积的导函数:一导乘二+一乘二导。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。

4、如果有复合函数,则用链式法则求导。

(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

三角函数周期求导公式?

关于三角函数的所有公式 及求导公式 – …… 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cos…

三角函数的周期怎么计算 – …… y=sinx的周期为2π y=sin(wx+q)的周期为2π/w 余弦函数的周期与正弦函数的计算方法一样 y=tanx的周期为π y=tan(wx+q)的周期为π/w

周期函数的求导公式…… 基本函数里面的三角函数都是周期函数例如:sinx、cosx、tanx、secx等

三角函数求导公式 – …… tanα??cotα=1 sinα??cscα=1 cosα??secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosα…

三角函数周期公式 – …… y=Asin(wx+b) 周期公式T=2π/w y=Acos(wx+b) 周期公式T=2π/w y=Atan(wx+b) 周期公式T=π/w

三角函数导数公式大全 – …… (sinx)’=cosx(cosx)’=-sinx(tanx)’=(secx)2(cotx)’=-(cscx)2(secx)’=secx*tanx(csc)’=-cscx*cotx


您可能感兴趣

返回顶部