三角函数的多次求导公式?
三角函数求导公式有:
1、(sinx)’ = cosx
2、(cosx)’ = – sinx
3、(tanx)’=1/(cosx)^2=(secx)^2=1+(tanx)^2
4、-(cotx)’=1/(sinx)^2=(cscx)^2=1+(cotx)^2
5、(secx)’=tanx·secx
6、(cscx)’=-cotx·cscx
7、(arcsinx)’=1/(1-x^2)^1/2
8、(arccosx)’=-1/(1-x^2)^1/2
9、(arctanx)’=1/(1+x^2)
10、(arccotx)’=-1/(1+x^2)
11、(arcsecx)’=1/(|x|(x^2-1)^1/2)
12、(arccscx)’=-1/(|x|(x^2-1)^1/2)
13、(sinhx)’=coshx
14、(coshx)’=sinhx
15、(tanhx)’=1/(coshx)^2=(sechx)^2
16、(coth)’=-1/(sinhx)^2=-(cschx)^2
17、(sechx)’=-tanhx·sechx
18、(cschx)’=-cothx·cschx
19、(arsinhx)’=1/(x^2+1)^1/2
20、(arcoshx)’=1/(x^2-1)^1/2
21、(artanhx)’=1/(x^2-1) (|x|<1)
22、(arcothx)’=1/(x^2-1) (|x|>1)
23、(arsechx)’=1/(x(1-x^2)^1/2)
24、(arcschx)’=1/(x(1+x^2)^1/2)
三角函数的求导函数简便方法?
(sinx)’=cosx
(cosx)’=-sinx
(tanx)’=sec2x=1+tan2x
(cotx)’=-csc2x
(secx)’ =tanx·secx
(cscx)’ =-cotx·cscx.
(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x
(sinx)’=cosx
(cosx)’=-sinx
(tanx)’=sec2x=1+tan2x
(cotx)’=-csc2x
(secx)’ =tanx·secx
(cscx)’ =-cotx·cscx.
(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x
三角函数的导数和微分公式?
(sinx)’=cosx
(cosx)’=-sinx
(tanx)’=sec2x=1+tan2x
(cotx)’=-csc2x
(secx)’ =tanx·secx
(cscx)’ =-cotx·cscx.
(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x
扩展资料:
基本三角函数关系的速记方法
六边形的六个角分别代表六种三角函数,存在如下关系:
1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。
2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ…
3)阴影部分的三角形,处于上方两个顶点的平方之和等于下顶点的平方值。
三角函数与反三角函数求导法则?
、反正弦函数的求导:(arcsinx)’=1/√(1-x^2)
2、反余弦函数的求导:(arccosx)’=-1/√(1-x^2)
3、反正切函数的求导:(arctanx)’=1/(1+x^2)
4、反余切函数的求导:(arccotx)’=-1/(1+x^2)
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x。
相应地。反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π 2;反余切函数y=”arccot” x的主值限在0<y<π。
1、反正弦函数
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。
3、反正切函数
正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
5、反余切函数
余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
6、反正割函数
正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
7、反余割函数
余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
扩展资料:
反三角函数的公式:
反三角函数的和差公式与对应的三角函数的和差公式没有关系:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];
y=arccos(x),定义域[-1,1],值域[0,π];
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);
y=arccot(x),定义域(-∞,+∞),值域(0,π);
sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;
证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。
其他几个用类似方法可得。
cos(arccosx)=x,arccos(-x)=π-arccosx。
tan(arctanx)=x,arctan(-x)=-arctanx。
反三角函数其他公式:
cos(arcsinx)=√(1-x^2)。
arcsin(-x)=-arcsinx。
arccos(-x)=π-arccosx。
arctan(-x)=-arctanx。
arccot(-x)=π-arccotx。
arcsinx+arccosx=π/2=arctanx+arccotx。
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x。
当x∈[-π/2,π/2]有arcsin(sinx)=x。
x∈[0,π],arccos(cosx)=x。
x∈(-π/2,π/2),arctan(tanx)=x。
x∈(0,π),arccot(cotx)=x。
x>0,arctanx=π/2-arctan1/x,arccotx类似。
若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))。
三角函数的诱导公式(四公式) 。
公式一: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 。
公式二: sin(π/2-α) = cosα cos(π/2-α) = sinα 。
公式三: sin(π/2+α) = cosα cos(π/2+α) = -sinα 。
公式四: sin(π-α) = sinα cos(π-α) = -cosα
三角函数求导法则讲解?
1、三角函数求导公式:(sinx)’=cosx、(cosx)’=-sinx、(tanx)’=sec2x=1+tan2x。
2、三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
三角函数求导基本常识?
1.锐角三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
2.倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
3.三倍角公式
sin3α=4sinα?sin(π/3+α)sin(π/3-α)
cos3α=4cosα?cos(π/3+α)cos(π/3-α)
tan3a=tana?tan(π/3+a)?tan(π/3-a)
4.三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
5.辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
6.四倍角公式
sin4a=-4*[cosa*sina*(2*sina^2-1)]
cos4a=1+(-8*cosa^2+8*cosa^4)
tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
7.降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
三角函数求导原理?
1三角函数的导数公式有
(sinx)’=cosx
(cosx)’=-sinx
(tanx)’=sec2x=1+tan2x
(cotx)’=-csc2x
(secx)’=tanx·secx
(cscx)’=-cotx·cscx.
(tanx)’=(sinx/cosx)’=[cosx·cosx-sinx·(-sinx)]/cos2x=sec2x
2基本的求导法则
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
2、两个函数的乘积的导函数:一导乘二+一乘二导。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
4、如果有复合函数,则用链式法则求导。
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
三角函数周期求导公式?
关于三角函数的所有公式 及求导公式 – …… 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cos…
三角函数的周期怎么计算 – …… y=sinx的周期为2π y=sin(wx+q)的周期为2π/w 余弦函数的周期与正弦函数的计算方法一样 y=tanx的周期为π y=tan(wx+q)的周期为π/w
周期函数的求导公式…… 基本函数里面的三角函数都是周期函数例如:sinx、cosx、tanx、secx等
三角函数求导公式 – …… tanα??cotα=1 sinα??cscα=1 cosα??secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosα…
三角函数周期公式 – …… y=Asin(wx+b) 周期公式T=2π/w y=Acos(wx+b) 周期公式T=2π/w y=Atan(wx+b) 周期公式T=π/w
三角函数导数公式大全 – …… (sinx)’=cosx(cosx)’=-sinx(tanx)’=(secx)2(cotx)’=-(cscx)2(secx)’=secx*tanx(csc)’=-cscx*cotx